AIGC工具 Stable Diffusion4.9下载安装教程

每日资源多多,千万别错过哦!

资源下载

下载链接1

下载链接2

注意事项

软件安装前务必关闭杀毒软件和防火墙

安装请严格按照本文流程进行安装,建议转发收藏本文

资源教程

图片[1]-AIGC工具 Stable Diffusion4.9下载安装教程-JieYingAI捷鹰AI

1.下载【Stable Diffusion4.9】文件到本地路径选择解压软件【解压到Stable Diffusion4.9】

图片[2]-AIGC工具 Stable Diffusion4.9下载安装教程-JieYingAI捷鹰AI

2.打开解压后的文件,选择右击【启动器...】选择【以管理员身份运行】

图片[3]-AIGC工具 Stable Diffusion4.9下载安装教程-JieYingAI捷鹰AI

3.点击【安装】

图片[4]-AIGC工具 Stable Diffusion4.9下载安装教程-JieYingAI捷鹰AI

4.安装中...

图片[5]-AIGC工具 Stable Diffusion4.9下载安装教程-JieYingAI捷鹰AI

5.安装成功,点【关闭】

图片[6]-AIGC工具 Stable Diffusion4.9下载安装教程-JieYingAI捷鹰AI

6.右击【A绘世启动器】,选择【发送到】,选择【桌面快捷方式】

图片[7]-AIGC工具 Stable Diffusion4.9下载安装教程-JieYingAI捷鹰AI

7.双击打开【AI绘世启动器快捷方式】图标启动软件,点击【一键启动】

图片[8]-AIGC工具 Stable Diffusion4.9下载安装教程-JieYingAI捷鹰AI

8.安装成功!(软件窗口将会在默认浏览器中打开,安装包中已经集成了部分模型,您可以自己下载更多模型导入使用)

图片[9]-AIGC工具 Stable Diffusion4.9下载安装教程-JieYingAI捷鹰AI

启动完成后会自动在浏览器打开WebUI

如果没有自动打开,可以在运行中复制网址,粘贴到浏览器中打开。

图片[10]-AIGC工具 Stable Diffusion4.9下载安装教程-JieYingAI捷鹰AI

到这一步新安装的用户基本上就可以直接出图了,整合包自带了一个二次元的大模型,后期可以根据自己的需求下载插件和模型

图片[11]-AIGC工具 Stable Diffusion4.9下载安装教程-JieYingAI捷鹰AI

图片[1]-AIGC工具 Stable Diffusion4.9下载安装教程-JieYingAI捷鹰AI

1. Stable Diffusion介绍

Stable Diffusion是2022年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像,尽管它也可以应用于其他任务,如内补绘制、外补绘制,以及在提示词指导下产生图生图的转变。

它是一种潜在扩散模型,由慕尼黑大学的CompVis研究团体开发的各种生成性人工神经网络之一。它是由初创公司StabilityAI、CompVis与Runway合作开发,并得到EleutherAI和LAION的支持。 截至2022年10月,StabilityAI筹集了1.01亿美元的资金。

Stable Diffusion的源代码和模型权重已分别公开发布在GitHub和Hugging Face,可以在大多数配备有适度GPU的电脑硬件上运行。而以前的专有文生图模型(如DALL-E和Midjourney)只能通过云计算服务访问。

2.Stable Diffusion原理解析2.1 技术架构

Stable Diffusion是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model; LDM)。扩散模型是在2015年推出的,其目的是消除对训练图像的连续应用高斯噪声,可以将其视为一系列去噪自编码器。Stable Diffusion由3个部分组成:变分自编码器(VAE)、U-Net和一个文本编码器。与其学习去噪图像数据(在“像素空间”中),而是训练VAE将图像转换为低维潜在空间。添加和去除高斯噪声的过程被应用于这个潜在表示,然后将最终的去噪输出解码到像素空间中。在前向扩散过程中,高斯噪声被迭代地应用于压缩的潜在表征。每个去噪步骤都由一个包含ResNet骨干的U-Net架构完成,通过从前向扩散往反方向去噪而获得潜在表征。最后,VAE解码器通过将表征转换回像素空间来生成输出图像。研究人员指出,降低训练和生成的计算要求是LDM的一个优势。

去噪步骤可以以文本串、图像或一些其他数据为条件。调节数据的编码通过交叉注意机制(cross-attention mechanism)暴露给去噪U-Net的架构。为了对文本进行调节,一个预训练的固定CLIPViT-L/14文本编码器被用来将提示词转化为嵌入空间。

图片[13]-AIGC工具 Stable Diffusion4.9下载安装教程-JieYingAI捷鹰AI

(以上图片来自于网络)

2.2 原理介绍

Stable Diffusion 技术,作为 Diffusion 改进版本,通过引入隐向量空间来解决 Diffusion 速度瓶颈,除了可专门用于文生图任务,还可以用于图生图、特定角色刻画,甚至是超分或者上色任务。作为一篇基础原理介绍,这里着重解析最常用的“文生图(text toimage)”为主线,介绍 stable diffusion 计算思路以及分析各个重要的组成模块。

下图是一个基本的文生图流程,把中间的 Stable Diffusion 结构看成一个黑盒,那黑盒输入是一个文本串“paradise(天堂)、cosmic(广阔的)、beach(海滩)”,利用这项技术,输出了最右边符合输入要求的生成图片,图中产生了蓝天白云和一望无际的广阔海滩。

Stable Diffusion 组成

图片[14]-AIGC工具 Stable Diffusion4.9下载安装教程-JieYingAI捷鹰AI

Stable Diffusion 的核心思想是,由于每张图片满足一定规律分布,利用文本中包含的这些分布信息作为指导,把一张纯噪声的图片逐步去噪,生成一张跟文本信息匹配的图片。它其实是一个比较组合的系统,里面包含了多个模型子模块,接下来把黑盒进行一步步拆解。stable diffusion 最直接的问题是,如何把人类输入的文字串转换成机器能理解的数字信息。这里就用到了文本编码器 text encoder(蓝色模块),可以把文字转换成计算机能理解的某种数学表示,它的输入是文字串,输出是一系列具有输入文字信息的语义向量。有了这个语义向量,就可以作为后续图片生成器 image generator(粉黄组合框)的一个控制输入,这也是 stable diffusion 技术的核心模块。图片生成器,可以分成两个子模块(粉色模块+黄色模块)来介绍。下面介绍下 stable diffusion 运行时用的主要模块:

1.文本编码器(蓝色模块),功能是把文字转换成计算机能理解的某种数学表示,在第三部分会介绍文本编码器是怎么训练和如何理解文字,暂时只需要了解文本编码器用的是 CLIP 模型,它的输入是文字串,输出是一系列包含文字信息的语义向量。

2.图片信息生成器(粉色模块)是 stable diffusion 和 diffusion 模型的区别所在,也是性能提升的关键,有两点区别:

① 图片信息生成器的输入输出均为低维图片向量(不是原始图片),对应上图里的粉色 44 方格。同时文本编码器的语义向量作为图片信息生成器的控制条件,把图片信息生成器输出的低维图片向量进一步输入到后续的图片解码器(黄色)生成图片。(注:原始图片的分辨率为 512512,有RGB 三通道,可以理解有 RGB 三个元素组成,分别对应红绿蓝;低维图片向量会降低到 64*64 维度)

② Diffusion 模型一般都是直接生成图片,不会有中间生成低维向量的过程,需要更大计算量,在计算速度和资源利用上都比不过 stable diffusion;

那低维空间向量是如何生成的?是在图片信息生成器里由一个 Unet 网络和一个采样器算法共同完成,在 Unet 网络中一步步执行生成过程,采样器算法控制图片生成速度,下面会在第三部分详细介绍这两个模块。Stable Diffusion 采样推理时,生成迭代大约要重复 30~50 次,低维空间变量在迭代过程中从纯噪声不断变成包含丰富语义信息的向量,图片信息生成器里的循环标志也代表着多次迭代过程。

(3) 图片解码器(黄色模块)输入为图片信息生成器的低维空间向量(粉色 4*4 方格),通过升维放大可得到一张完整图片。由于输入到图片信息生成器时做了降维,因此需要增加升维模块。这个模块只在最后阶段进行一次推理,也是获得一张生成图片的最终步骤。

扩散过程

图片[15]-AIGC工具 Stable Diffusion4.9下载安装教程-JieYingAI捷鹰AI

图片[16]-AIGC工具 Stable Diffusion4.9下载安装教程-JieYingAI捷鹰AI

© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享